MATERIAL DATA SHEET

His₆-GABARAP/Apg8p1, human recombinant Cat. # UL-410

There are at least three groups of mammalian Apg8 proteins which are homologs of the yeast Atg8 protein, including GABARAP ($\underline{GABA}_A \underline{R}$ ecceptor \underline{A} ssociated \underline{P} rotein). The mammalian Apg8 proteins are ubiquitin-like modifiers that have divergent functions in human, and are essential in autophagic conjugation systems. This modifier protein has a conserved C-terminal glycine residue that becomes covalently attached to phosphatidylethanolamine (PE) after it is activated by the Apg7p (E1) and Apg3p (E2) enzymes. GABARAP is associated with intracellular membranes and co-localizes with microtubules. GABARAP may play a role in intracellular transport and clustering of neurotransmitters (like GABA_A receptors) by mediating their interaction with the cytoskeleton. Accession # NP_009209.

Product Information		
Quantity:	500 µg	
Stock:	X mg/ml (X μ M) in 50 mM HEPES pH 8.0, 100 mM NaCl, 10% glycerol. Actual protein concentration will vary with specific Lot #.	
MW:	16 kDa	
Purity:	> 95% by SDS-PAGE	

Use & Storage

Use: Typical concentration to support conjugation *in vitro* is10-50 μM depending on conditions.

Storage: Store at -80° C. Avoid multiple freeze/thaw cycles.

Literature

References:	Bavro V.N., <i>et al.</i> (2002) <u>EMBO. Rep.</u> 3 : 183-189 Kouno T. <i>et al.</i> (2002) I Biomol NMR 22 : 97-98
	Knight D <i>et al.</i> (2002) I Biol Chem 277 : 5556-5561
	Nymann-Anderson I $et al. (2002)$ Neuropharm 43 : 476-481
	Tanida I. <i>et al.</i> (2003) Biochem Biophys Res. Comm 300 : 637-644
	Standar T. <i>et al.</i> (2003) Diochem. Diophys. Res. Comm. 500 . 057-044 Standar T. <i>et al.</i> (2002) L Diol Chem. 277 : 15562 12266
	Stalight 1., <i>et al.</i> (2002) <u>J.Diol.Client.</u> 277, 15505-15500 Wang H. <i>et al.</i> (1000) Nature 207 , 60,72
	wang H., et al. (1999) <u>Nature</u> . 39 7: 69-72 Via $N_{\rm eff}$ (2001) Comparison 74 : 409-412
	Xin Y., et al. (2001) <u>Genomics.</u> 74: 408-413

For Laboratory Research Use Only, Not For Use in Humans